Highway Hydraulics: Water Shuttle Operations Overview

Learning Objectives:

- Describe conditions requiring a water shuttle operation
- Identify basic components of a water shuttle operation
- Describe establishment and operation of:
* Fill site
* Dump site
* Water delivery route
- Identify water tender designs and their features
- Discuss techniques for improving flow rate, efficiency and safety

Water Shuttles:

 When to Establish?- Needed fire flow (GPM) cannot be met by water carried on first-due apparatus (engines and water tenders)
- Incident is outside hydranted area (or to supplement a weak hydrant system)
- Relay operation would not be
feasible (distance or resource limits;
technical capability)

Water Shuttle Advantages

- Water delivery rates in excess of 1000 GPM can be achieved
- Flexible and robust way to achieve water supply
- Cost-effective water supply system for rural areas (vs. municipal water system)

Water Shuttle Challenges

- Requires specialized equipment, training and procedures (SOPs/SOGs)
- Significant pre-incident planning required to be effective
- Risk exposure for firefighters:

Tanker rollovers, dump site backing

In a water shuttle: Time is Water

Time must be reduced whenever possible, but never at the

expense of safety

Implementing an
 Alternative Water Supply (Video by National Fire Academy)

Water Shuttle Components

Suppression Operations

Suppression Operations

Suppression Operations

Dump Site

Water Shuttle

Drafting
Pumper

Suppression Operations

Fill Site Operations

Water Supply Sources

What are some potential water sources?

Water Supply Sources

Pressurized Sources

- Municipal hydrant systems
- Irrigation pivots
- Elevated on-site tanks

Static Sources

- Ponds and lakes (natural and man-made)
- Streams (creeks, rivers, etc.)
- Ditches
- Cisterns
- Swimming pools

Fill Site Time Costs

Total Fill Site Time $=$ Fill Time + Handling Time

Fill Time

- Water tender tank capacity
- Water tender maximum fill rate
- Water source fill rate
- Drafting engine/pump flow rate

Handling Time

- Skill of fill site crew
- Capability of water tender driver
- Fill site design

Reducing Fill Site Restrictions

Water Source Improvements

- Install dry hydrants, sumps, and other drafting facilitators
- Design dry hydrants to support high flows ($\mathbf{1 0 0 0}$ gpm minimum)
- Maintain and flow-test dry hydrants once installed

Reducing Fill Site Restrictions

Handling Time Improvements

- Fill Site Layout: One-way traffic flow and minimize backing
- Use manifold, but only fill one water tender at a time
- Drafting engine/pump capability does not create chokepoint
- Fill site crew is well-trained and experienced
- Automatic Air Primers

Reducing Fill Site Restrictions

Fill Time Improvements

- Fill direct to tank if possible, not through a pump
- Ensure tank is properly vented
- Fill from ground level if possible
- Driver should remain in cab, ready to leave - fill site crew does all work

Dump Site Time Costs

Total Dump Site Time = Dump Time + Handling Time

Dump Time

- Water tender tank capacity
- Water tender maximum dump rate

Handling Time

- Skill of dump site crew
- Capability of water tender driver
- Dump site design/layout
- Water tender dump configuration (side/rear, multiple dumps)

Reducing Dump Site Restrictions

Flow Management

- Maximize use of side dumps; minimize need to back tenders
- Don't dump down to the "last drop" - only use most efficient flow
- Favor more efficient water tenders - allow to "leap

frog" those that dump
slower

Reducing Dump Site Restrictions

Handling Time Improvements

- Dump Site Layout: One-way traffic flow and minimize backing
- Set up adequate drop tanks to handle flow
- Dump site crew well-trained and experienced

Reducing Dump Site Restrictions

Dump Time Improvements

- Ensure tank is properly vented
- Use largest possible dump outlet
- Use multiple dump outlets if possible
- Driver should remain in cab, ready to leave - dump site crew does all work

Reducing Dump Site Restrictions

Reducing Dump Site Restrictions

Single-Lane Tanks (SLT)

- Rectangular shape better for deployment on narrow roadways
- Flange allows low-profile 90degree hookup to pumper

Reducing Dump Site Restrictions

Locating Dump Sites

- If possible, pre-plan dump sites for limited-access developments and long driveways
- Be prepared to relay pump
water from dump site to attack engines via LDH
- Dump site operations and water tender traffic will interfere with suppression operations and EMS access

Shuttle Route Time Costs

Total Travel Time = Route Distance \mathbf{x} Minutes/Mile

Route Distance

- Depends on location of water
supply sources (fill sites) and incident (dump site)
- Road conditions (weather)
- Road characteristics (surface, slope, curves, etc.)
- Capability of apparatus

Route Layout

- One-way (loop) routes
- May be longer, but safety is increased

Road Conditions

- Shortest route may not be suitable for repetitive tanker traffic

- Use best road for the job, even if longer

Reducing Travel Time

More Fill Sites

- The more fill sites available, the less time
water tenders have to spend on the road
- During Incident: Scout for closer water

supply if possible

- Long-Term: Locate and/or develop as many high-capacity water sources as possible

"Drive Faster" is NEVER the right answer

Reducing Travel Time

"Respect the Rig" Water Tender Rollover Case Studies

Water Tenders

Water Tender Flow Factors

- Tank capacity (gallons)
- Dump Rate (gpm)
- Fill Rate (gpm)
- Design (conventional vs. vacuum)

Water Tender Flow Factors

Tank Capacity

- Rated Capacity vs. Effective Capacity
- Large is not always the best choice - local conditions drive choice
- Larger tanks have longer dump and fill times

Ohio Fire Chiefs' Association - Emergency Response Plan Water Tender Resource Typing Standard

Resource Typing Standard			Shuttle Route Distance (miles)			
Type	Minimum Tank Capacity (gal)	Representative Sizes (rated tank capacity)	1	3	5	10
4	1000	$1000,1200,1500$	$125-175$	$75-125$	$50-100$	25
3	1800	$1800,2000,2200$	200	150	$100-125$	75
2	2400	2400,2500	225	175	$125-150$	100
1	3000	3500,4000	250	200	150	125

Model Assumptions (Standard Conditions):

- Fill Site: Water source flows 1000 gpm; handling time is one minute (maneuvering, hook-up, etc.); apparatus fills at 1000 gpm
- Dump Site: Handling time is one minute (maneuvering, hook-up, etc.); apparatus dumps at 1000 gpm
- Travel Conditions: Average speed is 35 mph with 0.65 minute modifier added per NFPA 1142

Water Tender Flow Factors

Dump Rate

- How quickly can the tank be emptied?
- Make sure large tanks are designed with high dump rates
- NFPA 1901 calls for a minimum of $\mathbf{1 0 0 0}$ gpm
- Considerations:
* Tank design
* Dump chute design
* Dump chute placement
* Dump chute size

Water Tender Flow Factors

- How quickly can the tank be filled?
- Large tanks should be designed to allow high fill rates
- NFPA 1901 calls for a minimum of 1000 gpm
- Maximum fill rate limited by manufacturer warranty on tanks in many cases

Water Tender Design

Conventional Design

- Modern designs use gravity to rapidly dump water via large chutes
- Older designs may use jet assist or pump water off
- May have rated pump (or not)
- Should have rear and side dumps (or directional dump on rear)
- Generally: Effective tank volume is 90% as dump rate declines with decreased pressure head

Conventional Water Tenders

Best Design Practices

- Ability to dump side and rear (or directional dump on rear)
- Multiple side dumps
- Remote-controlled dumps
(driver stays in cab)
- Automatic venting
- Large-diameter, direct-to-tank fill connection
- "Fireman's Friend" type valve on fill connection

- Fill connection accessible from
ground

- 100% of tank volume usable (effective = rated capacity)
- Consistent dump rate
- Fill site engine not required
- Functionality may offset higher up-front costs

Effective Tank Capacity

Keep Water Tenders Moving

$\$ 175,000$ is a lot to pay for a portable tank

Flow Calculation Exercise

 Raty 2.2 虫.

Section 1. Required Water Supply What Do We Need?

Water Supply Zone:
Maple Ridge Estates subdivision (MRE)

Min. Water Supply: 11,700 gallons Water Delivery Rate: 750 gpm

1. Required Water Supply

Water Supply Zone / Incident

Maple Ridge Estates

Minimum Water Supply

11,700

Water Delivery Rate
750

Section 2. Fill Site Available Water

Fill Site:
29-A
(Mad River@CR-29)

Exploitable Volume: unlimited

Maximum Flow Rate (FSQ): 1500 gpm

Section 2. Fill Site (continued)

Drafting Engine

Drafting Engine:
E-382
(mutual aid pumper)
Engine Flow Rate (EQ): 1,250 gpm

Fill Site Crew Handling Time: 1.5 minutes

2. Fill Site

Fill Site $29-A$	Drafting Engine E-382
Exploitable Volume (VEx) unlimited	Engine Flow Rate (EQ) 1,250
Maximum Flow Rate (FSQ) 1500	Fill Site Crew Handling Time (HTF) 1.5

Section 3. Dump Site

Dump Site: MRE-1
(pre-planned site)

Dump Site Crew Handling Time:
 1.0 minute

3. Dump Site

Dump Site

MRE-1

Dump Site Crew Handling Time (HTD)
1.0

Section 4. Shuttle Route

Route Name: HT-8
(pre-planned oneway loop)

Total Distance: 4.9 miles

Travel Speed: 35 mph

4. Shuttle Route

Route	Travel Time (TR)		
	4.9	1.7	
Total Distance (miles)	Distance x	$(60 / \mathrm{mph})$	
4.9			
Travel Speed (mph)	8.4 minutes		
35			

Section 5. Water Tenders
 First Alarm Assignment

Unit	Nominal Tank Capacity (gal)	Design	Fill Rate (gpm)	Dump Rate (gpm)
Tanker 111	1,814	Vacuum	844	1,400
Tanker 21	1,994	Conventional	814	3,365
Tanker 81	2,306	Conventional	860	1,186

5. Water Tenders

Section 6. Fill Site Time

Handling Time + Fill Time

Restricted Fill Rate:

What is the chokepoint?

- Fill Site Maximum Flow Rate (1500 gpm)
- Engine Flow Rate (1250 gpm)
- Tanker Rate of Fill (depends on unit)

Fill Time (minutes):
Adjusted Tank Capacity \div Restricted Fill Rate

Fill Site Handling Time (minutes):

- Time to maneuver, hook up, etc.
- Same for all water tenders

6. Fill Site Time

	Fill Time	Handling Time HTF	Total Fill Time (T (V/FSR)+HTF
844	2.1	1.5	3.6
814	2.2	1.5	3.7
860	2.4	1.5	3.9

Section 7. Dump Site Time Handling Time + Dump Time

Dump Time (minutes):
Adjusted Tank Capacity \div Dump Rate
Dump Site Handling Time (minutes):

- Time to maneuver, open dumps, etc.
- Same for all water tenders

7. Dump Site Time

Dump Time (V/RD)	Handling Time HTD	Total Dump Time (V/RD)+HTD
1.3	1.0	$\mathbf{2 . 3}$
0.5	1.0	$\mathbf{1 . 5}$
1.7	1.0	$\mathbf{2 . 7}$

Section 8. Travel Time

Travel Time (minutes):

- Route Distance x ($60 \div$ Travel Speed)
- Time required to travel entire route
- Same for all units

8. Travel

Time

Total Travel Time

TR

8.4

8.4

8.4

Section 9. Flow Calculations

What is the total flow?

Total Time:

- Fill Time + Dump Time + Travel Time

Continuous Flow Rate (by Water Tender):

- Adjusted Tank Capacity \div Total Time
- Sum all for total shuttle flow (gpm)

9. Flow Calculations

$$
\begin{array}{|c|c|}
\hline \text { Total Time (T) } & \text { Continuous Flow } \\
\hline \text { TF+TD+TR } & (\mathrm{V} / \mathrm{T}) \\
\hline 14.3 & 126 \\
\hline 13.6 & 132 \\
\hline 15.1 & 138 \\
\hline
\end{array}
$$

TOTAL SHUTTLE FLOW (GPM)
396
Cannot exceed Fill Site Flow Rate (FSQ)

Will This Shuttle Work?

Requirement	Needed	Delivered
Total Water Supply (gallons)	11,700	Unlimited
Water Delivery Rate (gpm)	750	$396 \times$

What can we change?

More Water Tenders?

Needed	Delivery Rate
Current	396 gpm
Add Two x 2,000 gallon	644 gpm (+248 gpm $/+63 \%)$ Each adds 124 gpm
	762 gpm (+366 gpm $/+92 \%)$ Each adds 183 gpm

Work Harder?

Needed	Delivery Rate
Current Fill Site Handling Time: 1.5 minutes	396 gpm
Decrease to 0.5 minutes	426 gpm $(+30 \mathrm{gpm} /+8 \%)$

Drive Faster?

Needed	Delivery Rate
Current: 35 mph	396 gpm
Increase to 45 mph	455 gpm (+59 gpm / +15\%)
Increase to 55 mph	503 gpm $(+107 \mathrm{gpm} /+27 \%)$

Closer Fill Site?

Needed	Delivery Rate
Current: 4.9 miles	396 gpm
Decrease to 2.5 miles	555 gpm $(+159 \mathrm{gpm} /+40 \%)$
Decrease to 1.0 mile	743 gpm $(+347 \mathrm{gpm} /+88 \%)$

What's the Right Answer?

Need 354 gpm more

Change	Result	Risk	Difficulty
Current	396 gpm		
Add Two $\times 2,000$ gallon	+248 gpm	Low	Moderate
Add Two $\times 3,500$ gallon	+366 gpm	Low	Moderate
Fill Site Handling	+30 gpm	Moderate	Moderate
Drive Faster (45 mph)	+59 gpm	High	Low
Drive a lot Faster (55 mph)	+107 gpm	Very High	Low
Closer Fill Site	+159 gpm	Low	High
A Lot Closer Fill Site	+347 gpm	Low	High

Ohio Fire Chiefs’ Association

Water Supply Technical Advisory Committee

http://www.ohiofirechiefs.org/aws/OFCA/pt/sp/water_TAC

